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Abstract. The aim of the present paper is to give a new kind of point of view in the theory of
variational inequalities. Our approach makes possible the study of both scalar and vector variational
inequalities under a great variety of assumptions. One can include here the variational inequalities
defined on reflexive or nonreflexive Banach spaces, as well as the vector variational inequalities
defined on topological vector spaces.
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1. Introduction

We start with the classical formulation of the variational inequalities.
Let X be a Banach space, X∗ its dual space, K ⊂ X be a nonempty, convex set,
and T : K → X∗ be a mapping. The variational inequality problem is:{

Find x0 ∈ K such that

〈T (x0), x − x0〉 � 0, ∀x ∈ K.
(V I )

A very important factor in the solvability of (V I ) is the weak-compactness of the
closed, convex, bounded subsets of a reflexive Banach space. A possible treatment
in nonreflexive Banach spaces has been given in [3], where taking into considera-
tion the inclusion K ⊂ X∗∗, the mapping T was defined on a subset of X∗∗, and
solutions in X∗∗ were obtained. In this way the weak-compactness of bounded and
weakly closed subets of X∗∗ is guaranteed, but some cases are not covered, for
example when T : L∞(
) → L1(
), where 
 ⊂ R

n is a bounded domain.
As an improvement we recommend the setting T : K ⊂ X∗ → X. This

will appear as a special case of our (OV I) problem below and covers any case
mentioned above. The infinite dimensional formulation of vector variational in-
equalities [4, 9, 14, 19] uses Banach spaces Z, W , a nonempty, closed, convex
subset K ⊂ Z a mapping T1 : K → (Z, W)∗, where by (Z, W)∗ we denoted the
space of all linear and continuous mappings from Z into W . Let C1 : K � W be a
set-valued mapping with C1(z) a closed, convex, pointed cone such that intC1(z) �=
∅, for all z ∈ K. With intC1(z) we denote the interior in the norm topology.
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second author was supported by the World Bank and CNCSU Contract nr. 46174/1997.
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The vector variational inequality can be stated as:{
Find z0 ∈ K such that

〈T1(z0), z − z0〉 �∈ −intC1(z0), ∀z ∈ K.
(V V I )

Problems of this kind were studied recently in [4, 9, 12, 13, 17, 19].
Let us recall a recent result concerning the existence of the solutions of(V V I).

DEFINITION 1.1. [19] The mapping T1 : K → (Z, W)∗ is said to be weakly
C1-pseudomonotone if for each z, u ∈ K

〈T1(z), u − z〉 �∈ −intC1(z) ⇒ 〈T1(u), u − z〉 �∈ −intC1(z).

DEFINITION 1.2. The mapping T1 : K → (Z, W)∗ is said to be hemicontinuous
on K if for every z, u ∈ K, t ∈ [0, 1] the mapping

t �→ 〈T1 (z + t (u − z)) , u − z〉
is continuous at 0+.

DEFINITION 1.3. [19] The mapping T1 : K → (Z, W)∗ is said to be coercive if
there exists aweakly compact subset B of Z and u0 ∈ B ∩ K such that

〈T1(z), u0 − z〉 ∈ −intC(z), ∀z ∈ K \ B.

THEOREM 1.1. [19] Let Z, W be real Banach spaces. Let K be a nonempty
closed, convex subset of Z. Let C1 : K � W be such that, for each z ∈ K, C1(z) is
a closed, convex pointed cone with intC1(z) �= ∅, and let W \ (−intC1(·)) having
a weakly closed graph in Z × W . Suppose that T1 : K ⊂ Z → (Z, W)∗ is weakly
C1-pseudomomotone, hemicontinuous on K and coercive. Then the (V V I) has a
solution.

REMARK 1.1. Under the assumptions of Theorem 1.1, the Banach space W has
to be finite dimensional. Indeed, the assumption that W \ (−intC1(·)) has a weakly
closed graph, implies that W \ (−intC1(z)) is weakly closed for each z ∈ K and
hence intC1(z) is weakly open for each z ∈ K. But C1(z), as a closed, convex,
pointed cone, has interior points in the weak topology only if the space W is finite
dimensional.

Our goal is to give a suitable approach of the above mentioned problems in
a wider context. Let us show now our general setting. Let X, Y be Hausdorff
topological vector spaces. By (X, Y )∗ we denote the space of linear and continuous
operators from X into Y endowed with the topology of pointwise convergence.

A subset C̃ of Y is called a convex cone if C̃ + C̃ ⊂ C̃ and λC̃ ⊂ C̃ for all
λ > 0. Let K ⊂ (X, Y )∗ be a nonempty, convex set, T : K ⊂ (X, Y )∗ → X be a
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mapping, and C : K � Y be a set-valued mapping with convex, cone values such
that 0 �∈ C(f )for allf ∈ K.

The variational inequality problem which we intend to solve is:{
Find f0 ∈ K such that

〈f − f0, T (f0)〉 �∈ C(f0), ∀f ∈ K.
(OV I )

The notation (OV I) is motivated by the fact that the solutions are sought in the
space of linear and continuous operators.

In the next section we will study the solvability of the problem (OV I) using
the C-psedomonotonicity assumption (Theorem 2.1) and we will show that, using
our result, a stronger version of Theorem 1.1 can be proved (Corollary 2.1).

In section 3 we study, as a special case of (OV I), the solvability of scalar
variational inequalities defined on Hausdorff topological vector spaces, and we
solve a variational inequality defined on L∞(
).

In section 4 we introduce the notion of B-pseudomonotonicity, as a natural
generalization of the pseudomonotonicity introduced by Brézis. We will prove the
solvability of (OV I) using the B-pseudomonotonicity (Theorem 4.1) and a con-
nection between the C and B-pseudomonotonicities. These results are significant
even in the setting of the problems (V I ) and (V V I).

2. Solvability of OVI

Let us consider our setting for the (OV I) variational inequalities from the previous
section.

DEFINITION 2.1. The mapping T : K → X is said to be C-pseudomonotone, if

〈g − f, T (f )〉 �∈ C(f ) ⇒ 〈g − f, T (g)〉 �∈ C(f ).

DEFINITION 2.2. The mapping T : K → X is said to be hemicontinuous, if the
function

t �→ 〈g − f, T (f + t (g − f ))〉
is continuous at 0+, for all f, g ∈ K, as a mapping from R+ into Y .

DEFINITION 2.3. Let B be a subset of K. We say that the set-valued mapping
C : K � Y has a closed graph with respect to B if for every net (fi) ⊂ K and
(yi) ⊂ Y such that yi ∈ C(fi), (fi) converge to f ∈ B with respect to the topology
of pointwise convergence (w.r.t.p.c.) and yi converge to y ∈ Y , then y ∈ C(f ).

LEMMA 2.1. Let T : K → X be C-pseudomonotone and hemicontinuous, and
the graph of Y \ C(·) be closed with respect to B ⊂ K. Then the following two
assumptions are equivalent:
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(i) There exists f ∈ B such that

〈g − f, T (f )〉 �∈ C(f ), ∀g ∈ K.

(ii) There exists f ∈ B such that

〈g − f, T (g)〉 �∈ C(f ), ∀g ∈ K.

Proof. We need to prove only (ii) ⇒ (i) because the reverse implication follows
from the C-pseudomonotonicity of T .

Let us suppose that (ii) holds. Then

〈tg + (1 − t)f − f, T (tg + (1 − t)f )〉 �∈ C(f )

for all g ∈ K and t ∈ (0, 1). Hence

〈g − f, T (f + t (g − f ))〉 �∈ C(f ),

which means that

〈g − f, T (f + t (g − f ))〉 ∈ Y \ C(f ).

The hemicontinuity of T and the closedness of the graph of Y \ C(·) with respect
to B imply that

〈g − f, T (f )〉 ∈ Y \ C(f ).

DEFINITION 2.4. Let B be a compact (w.r.t.p.c.) subset of K. The mapping T :
K → X is said to be coercive with respect to B, if there exists g0 ∈ B such that

〈g0 − f, T (f )〉 ∈ C(f ), ∀f ∈ K \ B.

We can state now our result regarding the solvability of (OV I).

THEOREM 2.1. Let the mapping T : K → X be C-pseudomonotone, hemicon-
tinuous, coercive with respect to the compact set B ⊂ K and let us suppose that
the set-valued mapping Y \C(·) has closed graph with respect to B ⊂ K. Then the
variational inequality (OV I) is solvable.

Proof. We define the set-valued mappings T1, T2 : K � X by

T1(g) = {f ∈ K : 〈g − f, T (f )〉 �∈ C(f )} ,

T2(g) = {f ∈ B : 〈g − f, T (g)〉 �∈ C(f )} .

Using the fact that the sets C(f ) are convex and do not contain the origin we find
that T1 is a KKM mapping (similar to [4, 19]), which means that for all g1, ..., gn ∈
K hold

conv {g1, ..., gn} ⊂
n⋃

i=1

T1(gi).
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Hence, the mapping T 1 : K → X, defined by T 1(f ) = T1(f ), the closure
w.r.t.p.c., is also a KKM-mapping. The coercivity of T with respect to B implies
that T1(g0) ⊂ B which means that T1(g0) is compact w.r.t.p.c. Using the Ky Fan
lemma [6], we get⋂

g∈K

T1(g) �= ∅.

We will prove that⋂
g∈K

T1(g) ⊂ T2(h), ∀h ∈ K.

For, let us observe first that⋂
g∈K

T1(g) =
⋂
g∈K

(
T1(g) ∩ T1(g0)

)
⊂
⋂
g∈K

T1(g) ∩ B ⊂ B.

Let

f ∈
⋂
g∈K

T1(g).

Then f ∈ B ∩ T1(g) for all g ∈ K.
Let us choose h ∈ K arbitrarily. Then there exists a net (f h

i ) ⊂ T1(h) such that
f h

i converge to f ∈ B w.r.t.p.c.
The C-pseudomonotonicity of T implies that

〈h − f h
i , T (h)〉 ∈ Y \ C(f h

i )

and with the aid of the closedness of the graph of Y \ C(·) with respect to B we get

〈h − f, T (h)〉 ∈ Y \ C(f ).

So, f ∈ T2(h) and since h was chosen arbitrarily, we get that f ∈ T2(h), for all
h ∈ K. Hence

∅ �=
⋂
g∈K

T1(g) ⊂
⋂
g∈K

T2(g) ⊂ B.

Using Lemma 3.1 we get⋂
g∈K

T2(g) =
⋂
g∈K

T1(g),

so ⋂
g∈K

T1(g) �= ∅



104 A. DOMOKOS AND J. KOLUMBÁN

which means that (V V I) has a solution.

We will prove now the solvability of (V V I) under weaker assumptions than in
Theorem 1.1.

COROLLARY 2.1. Let Z, W be real Banach spaces. Let K be a nonempty closed,
convex subset of Z. Let C1 : K � W be such that, for each z ∈ K, C1(z) �= W

is a convex cone with intC1(z) �= ∅, and let W \ (−intC1(·)) having a weakly
closed graph in Z × W . Suppose that T1 : K → (Z, W)∗ is weakly C1-pseudo-
monotone, hemicontinuous (from R+ to the weak topology of W ), and coercive.
Then the (V V I) has a solution.

Proof. Let us consider X = (Z, W)∗ as the Banach space of the linear and
continuous mappings between two Banach spaces and Y = (W, σ (W, W ∗)), i.e.,
W endowed with its weak topology. In this way we can consider W as a locally
convex space.

We identify z ∈ Z with fz ∈ ((Z, W)∗, W)∗, defined by fz(l) = 〈l, z〉 for all
l ∈ (Z, W)∗.

We consider K ⊂ Z ⊂ ((Z, W)∗, W)∗ and the mapping T : K → (Z, W)∗
defined by T (fz) = T1(z).

The weak-compactness of B in Z imply the compactness of B w.r.t.p.c. in
(X, Y )∗. Indeed, if (fzi

) ∈ B ⊂ ((Z, W)∗, W)∗ is a net, then (zi) ∈ B ⊂ Z

and we can choose a weakly converging subnet zj ⇀ z ∈ B. Hence fzj
→ fz

w.r.t.p.c.
We consider C(fz) = −intC1(z) for all z ∈ K. The weak C1-pseudomonoto-

nicity of T on K implies the C-pseudomonotonicity of T on K.
Since the domain and the range of the mapping t �→ 〈g − f, T (f + t (g − f ))

are [0, 1] and Y , the hemicontinuity of T is fulfilled.
Let us prove that Y \ C(·) has a closed graph with respect to B. For this let

fzi
∈ K converging to fz ∈ B w.r.t.p.c. and wi ∈ C(fzi

) such that wi ⇀ w. Then

〈l, zi〉 ⇀ 〈l, z〉, ∀l ∈ (Z, W)∗.

So,

〈w∗ ◦ l, zi〉 → 〈w∗ ◦ l, z〉, ∀l ∈ (Z, W)∗, w∗ ∈ W ∗,

and hence

〈z∗, zi〉 → 〈z∗, z〉, ∀z∗ ∈ Z∗,

which means that zi ⇀ z. Using the weak closedness of the graph of W\(−intC1(·))
we get that w ∈ W \ (−intC1(z)) and from here w ∈ Y \ C(fz).

So we can use Theorem 2.1 to find a solution for the problem (V V I).
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3. The Goldman test and scalar variational inequalities

First we recall a theorem which is a generalization of the well-known Alaoglu-
Bourbaki theorem regarding the weak-compactness of subsets of the dual of a
Banach space.

THEOREM 3.1. (Goldman [8, 15]) If X is a real topological vector space, Y is a
real Hausdorff topological vector space, U ⊂ X is a subset with nonempty interior,
M ⊂ Y is compact, then the set

A = {
A ∈ (X, Y )∗ : A(U) ⊂ M

}
is compact w.r.t.p.c.

This result can be used to verify the compactness of the set B in Theorem 3.2.
Let us consider, for example, the case when Y = R, X is a Hausdorff topological
vector space, K ⊂ X∗ is nonempty and convex. Let T : K → X and we consider
the following variational inequality:{

Find f0 ∈ K such that

〈f − f0, T (f0)〉 � 0, ∀f ∈ K.
(V I1)

Theorem 2.1 reduces to the following result.

THEOREM 3.2. Let X be a Hausdorff topological vector space, K ⊂ X∗ be
nonempty and convex. Let B be convex, equicontinuous and closed w.r.t.p.c. Let
T : K → X be pseudomonotone, hemicontinuous and coercive with respect to B.
We suppose that T has closed graph with respect to B.

Then the variational inequality (V I1) has a solution.
Proof. We only need to show that B is compact with respect to the toplogy

of pointwise convergence. Indeed, the equicontinuity shows that for ε > 0 and
M = [−ε, ε]

U =
⋂
f ∈B

f −1 ([−ε, ε])

is a neighborhood of the origin in X. Then

B ⊂ {
f ∈ X∗ : f (U) ⊂ [ε, ε]

}
.

Using Theorem 3.1, we realize that B as a closed subset of a compact set it is
compact with respect ot the topology of pointwise convergence.

We will now give an example showing the utility of our proposal.

EXAMPLE 3.1. Let 
 ⊂ R
n be a bounded domain, F : 
×R → R be a function

satisfying the following conditions:
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(i) F(·, r) is measurable for all r ∈ R.
(ii) F(ω, ·) is continuous for a.e. ω ∈ 
.
(iii) F(ω, ·) is monotone nondecreasing for all ω ∈ 
.
(iv) F(·, r) ∈ L1(
) for all r ∈ R.

We consider the Nemitski-operator defined by F , namely

T (f )(ω) = F(ω, f (ω))

which in this case maps L∞(
) into L1(
). Moreover, T is continuous, bounded
and monotone. Let K ⊂ L∞(
) = L1(
)∗ be a closed, convex, bounded set and
let us consider the following variational inequality:


Find f0 ∈ K such that

〈f − f0, T (f0)〉 =∫



F (ω, f0(ω)) (f (ω) − f0(ω)) dω � 0, ∀f ∈ K.

(V I2)

K being weakly compact, we can use Theorem 3.2 to prove that, under assumptions
(i) − (iv), the problem (V I2) has a solution.

4. B-pseudomonotone mappings

Let us consider the setting of the problem (OV I).

DEFINITION 4.1. The mapping T : K ⊂ (X, Y )∗ → X is said to be B-
pseudomonotone with respect to the set-valued mapping C if for each net (fi) ⊂ K

and f, g ∈ (X, Y )∗ such that fi → f w.r.t.p.c. and

〈(1 − λ)f + λg − fi, T (fi)〉 ∈ Y \ C(fi), ∀λ ∈ [0, 1], ∀fi (4.1)

we have

〈g − f, T (f )〉 ∈ Y \ C(f ).

This B-pseudomonotonicity generalizes the pseudomonotonicity introduced by Brézis
[1, 10, 18] in order to solve variational inequalities. Let us recall the definition of
this notion in the context of the problem (V I ) presented in the first section.

The mapping T : K → X∗ is said to be pseudomonotone if for every net
(xi) subsetX and x, y ∈ X such that xi ⇀ x and lim inf〈T (xi), x − xi〉 � 0 we
have

lim sup〈T (xi), y − xi〉 � 〈T (x), y − x〉.
From this definition we can deduce that if T is pseudomonotone, then

xi ⇀ xand〈T (xi), (1 − λ)x + λy − xi〉 � 0, ∀λ ∈ [0, 1], ∀xi

imply that 〈T (x), y − x〉 � 0.
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It is well known that a monotone and hemicontinuous mapping T : K → X∗,
where K ⊂ X is closed and convex, is pseudomonotone in the sense of Brézis. The
following proposition generalizes this result.

PROPOSITION 4.1. Let us consider the setting of (OV I) and let us suppose that:
(a) T is C-pseudomonotone and hemicontinuous.
(b) The graph of Y \ C(·) is closed.
Then T is B-pseudomonotne with respect to C.

Proof. Let us consider the set-valued mappings T1, T2 : K → (X, Y )∗ defined
by

T1(g) = {f ∈ K : 〈g − f, T (f )〉 ∈ Y \ C(f )}
and

T2(g) = {f ∈ K : 〈g − f, T (g)〉 ∈ Y \ C(f )} .

In order to prove the B-pseudomonotonicity of T , we have to prove that for each
line segment D we have⋂

g∈K∩D

T1(g)
⋂

D ⊂
⋂

g∈K∩D

T2(g)
⋂

D ⊂

⊂

 ⋂

g∈K∩D

T2(g)


⋂D =


 ⋂

g∈K∩D

T1(g)


⋂D.

The first inclusion is due to the C-pseudomonotonicity of T , because T1(g) ⊂
T2(g) for all g ∈ K.

The equality is implied by Lemma 2.1 in the case of B = K = K ∩ D.
We have to prove only the second inclusion. For, let

f ∈
⋂

g∈K∩D

T2(g)
⋂

D

and fi → f w.r.t.p.c. such that

fi ∈
⋂

g∈K∩D

T2(g).

Hence

〈g − fi, T (g)〉 ∈ Y \ C(fi), ∀g ∈ K ∩ D.

Assumption (b) implies that

〈g − f, T (g)〉 ∈ Y \ C(f ),

whence

f ∈
⋂

g∈K∩D

T2(g)
⋂

D.
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LEMMA 4.1. [2] Let V be a Hausdorff topological vector space, K ⊂ V and
T1 : K � V such that:

(i) T1(v0) is compact for some v0 ∈ V .
(ii) T1 is a KKM-mapping.
(iii) For every v ∈ K, the intersection of T1(v) with any finite dimensional

subspace is closed.
(iv) For every line segment D of V , we have

⋂
v∈K∩D

T1(v)
⋂

D =
( ⋂

v∈K∩D

T1(v)

)⋂
D.

Then⋂
v∈K

T1(v) �= ∅.

THEOREM 4.1. Let us consider our setting for the p roblem (OV I) and let us
suppose that:
(1) The intersection of K with any finite dimensional subspace of (X, Y )∗ is closed

w.r.t.p.c.
(2) The graph of Y \ C(·) is closed.
(3) T is continuous on the finite dimensional subspaces of (X, Y )∗.
(4) T is coercive with respect to a compact, convex B ⊂ (X, Y )∗.
(5) T is B-pseudomonotone with respect to the set-valued mapping C.
Then there exists f0 ∈ B such that

〈g − f0, T (f0)〉 �∈ C(f0), ∀g ∈ K.

Proof. Let T1 : K � X be defined by

T1(f ) = {f ∈ K : 〈g − f, T (f )〉 ∈ Y \ C(f )} .

In the same manner as we did in the proof of Theorem 2.1 we can prove that:
– T1(g0) is compact,
– T1 is a KKM-mapping.

In order to prove that assumption (iii) of Lemma 4.1 is satisfied, let S be a finite
dimensional subspace of (X, Y )∗ and let g ∈ K. Then

T1

⋂
S = {f ∈ K ∩ S : 〈g − f, T (f )〉 ∈ Y \ C(f )} .

Let (fn) ⊂ T1(g) ∩ S such that fn → f . Since K ∩ S is closed, it follows that
f ∈ K ∩ S.

It is enough to consider the case when S is two dimensional. In this case there
exists (λn), (µn) ⊂ R, h, k ∈ (X, Y )∗ such that g − fn = λnh + µnk and g − f =
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λh + µk. We have λn → λ, µn → µ and

〈g − fn, T (fn)〉 − 〈g − f, T (f )〉
= 〈g − fn, T (fn) − T (f )〉 + 〈f − fn, T (f )〉
= 〈λnh + µnk, T (fn) − T (f )〉 + 〈(λn − λ)h

+ (µn − µ)k, T (f )〉 → 0, n → ∞.

Assumption (2) implies now that 〈g − f, T (f )〉 ∈ Y \ C(f ).
Assumption (iv) of Lemma 4.1 is implied by assumption (5) of Theorem 4.1.

In order to prove this, it is enough to show that

f ∈
⋂

λ∈[0,1]
T1((1 − λ)f + λg)

⋂
[f, g]

implies

f ∈
⋂

λ∈[0,1]
T1((1 − λ)f + λg)

⋂
[f, g].

Let (fi) be a net such that

fi ∈
⋂

λ∈[0,1]
T1((1 − λ)f + λg)andfi → f.

Hence

〈(1 − λ)f + λg − fi, T (fi)〉 ∈ Y \ C(fi), ∀fi,

therefore, by the B-pseudomonotonicity of T , we have

〈g − f, T (f )〉 ∈ Y \ C(f ),

which means that

f ∈
⋂

λ∈[0,1]
T1((1 − λ)f + λg)

⋂
[f, g].

Assumptions (i) − (iv) of Lemma 4.1 are satisfied by T1, so⋂
g∈K

T1(g) �= ∅,

and hence there exists a solution of the problem (OV I).

REMARK 4.1. If T carries any finite dimensional subset of K into finite di-
mensional subsets, than it is enough to suppose that the intersection of the graph
of Y \ C(·) with finite dimensional subspaces is closed. In this case the subsets
Y \ C(f ) needn’t be closed, which due to Remark 1.1 is an important property if
Y is infinite dimensional.
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